[58]:[59] Using Evidence in your answer.

One of the things to keep in mind about punnett squares and ratios is that it is for specific parents. If you are looking for a 3:1 ratio, it is important to know why that ratio is important. For example, if we were looking at the offspring for parents <u>**Tt & tt**</u>, what ratio of blue : orange would we be looking for? Do a punnett square to find out.

<u>Genotype</u>	<u>Phenotype</u>
TT %	Blue %
Tt%	Orange%
tt%	ratio (blue:orange):

In our lab, we were using parents with a genotype of Tt & Tt, so we were NOT looking for the ratios above.

Use the suggestions below to rewrite your answer to #3.

Data - use actual data in your answer whenever possible 75% : 25% = 3 : 1

- 1. The first generation of critters were heterozygous with pure _____ and pure _____ tails. (tail colors)
- 2. Our parents (2nd generation) were both heterozygous, so if the critter tail trait follows a COMPLETE DOMINANCE pattern, we would expect to see a _____ ratio (blue : orange).

3. In the third generation, we saw both blue and orange tails in a ______ ratio.

- 4. We had a total of ______ blue tails and ______ orange tails.
- 5. This shows complete dominance because...

3. Use the DATA as evidence that critter tail color follows a COMPLETE DOMINANCE inheritance pattern.